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Abstract—Transfer learning methods are used in lung ultra-
sound (US) video classification as the training data for learning
is generally limited. However, transfer learning models trained
on the ImageNet dataset have been considered in the literature.
Recently, the RadImageNet dataset, which contains medical
images, was made available with four pre-trained models. In
this work, pretrained models from both of these datasets are
used as the backbone network, and models are developed for
COVID-19 classification based on frames and videos. Random
frame selection method is proposed and compared with the
commonly used constant and non-adjacent frame selections.
Video classification based on selected frames (VCBSF), and video
classification based on the whole video (VCBWV) using voting
are studied as part of video classification approach. A publicly
available COVID-19 dataset is used to do this comparative study.
The pre-trained models using the ImageNet dataset outperformed
those using the RadImageNet dataset for frame classification. The
ResNet50 and DenseNet121 models using ImageNet outperformed
their counterparts using RadImageNet for VCBSF classification,
while the Inception_ResNet_V2 and Inception_V3 models using
RadImageNet performed better for VCBWV classification. These
findings provide insight into improving the accuracy of COVID-
19 detection using deep learning techniques and random frame
selection.

Index Terms—COVID-19 , Random frame selection, RadIma-
geNet, ImageNet, Transfer learning, Frame classification, Video
classification

I. INTRODUCTION

In 2019, the World Health Organization (WHO) declared
COVID-19 a pandemic, which has impacted over half a billion
people worldwide and led to more than 6 million deaths
[1]. Early detection of COVID-19 can significantly reduce its
spread among individuals and consequently lower mortality
rates [2]. Although the reverse transcription-polymerase chain
reaction (RT-PCR) test is considered the gold standard for
detecting COVID-19 , it has been found to have low sensitivity
[3]. Medical imaging modalities are an alternative viable
option, as they are considered to be accurate and highly
sensitive diagnostic tools. Computed tomography (CT) [4],
[5] and ultrasound (US) imaging [6], [7], are particularly
found effective for detection of COVID-19 . However, CT is
expensive, ionizing, and requires sterilization between scans
of different patients [3], [8], when compared to US imaging.

US imaging is portable, affordable, radiation-free, and easy
to disinfect when compared to CT [9], [10]. However, the
classification of COVID-19 using US images is challenging
due to noise and low resolution. Several deep-learning models
have been proposed in the literature for the classification of
COVID-19 . Due to the limited availability of US images,
transfer learning methods are widely used to classify COVID-
19 into one of three classes: a lung infected with COVID-
19, a lung infected with bacterial pneumonia, or a healthy
lung. These models were usually trained using the ImageNet
dataset. For instance, pre-trained deep learning models such as
POCOVID-Net, based on pre-trained VGG16, were proposed
in [8], [11], and pre-trained models based on VGG19, Incep-
tionV3, Xception, and ResNet50 were introduced in [9]. Pre-
trained VGG16 and ResNet18 were proposed in [12], ResNet
was employed in [13], and additional pre-trained models
were discussed in [6], [14], [15], [16], [17]. As mentioned
previously, all pre-trained models were trained using the large
generic ImageNet dataset [18]. Recently, a large dataset of
medical images named RadImageNet was made available,
as reported in [19]. Four models, namely ResNet50 [20],
DenseNet121 [21], Inception_ResNet_V2 [22], and Incep-
tion_V3 [23], were trained using this dataset and have been
made publicly available. In this work, these pre-trained models
based on RadImageNet are utilized and their classification
performance against the same models trained on the ImageNet
dataset is studied.

The majority of models proposed in the literature extract
frames from US video clips using a constant frame rate,
except for the approach presented in [24], which extracts
frames utilizing the non-adjacent frame selection method. The
constant frame selection method is based on the assumption
that all videos have a constant frame rate, while the non-
adjacent method selects frames that are not adjacent. To
address these limitations, a random frame selection method is
proposed that does not rely on any assumptions or constraints.
Once the frames are extracted, they are utilized for COVID-
19 classification. It is worth noting that most studies split the
extracted frames into train and test sets, which may lead to
inaccurate results, While other papers address this issue in
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their work, [7], [8]. This is because the frames from the same
video clip may end up in both the training and testing sets
simultaneously, resulting in data leakage. To ensure accurate
performance and prevent data leakage, this study divides the
data into training and testing based on the videos themselves.

The main contributions of this study can be summarized as
follows.

1) This is the first ever study to use RadImageNet
trained models for transfer learning for COVID-
19 classification.

2) Random frame selection method is proposed and com-
pared with previous frame selection techniques (constant
and non-adjacent methods) that are the current state-of-
the-art.

3) Four pre-trained models (ResNet50 , DenseNet121 , In-
ception_ResNet_V2 , and Inception_V3 ) are utilized to
classify lung images into three categories: lungs infected
with COVID-19 , lungs infected with bacterial pneumo-
nia, and healthy lungs.

4) The performance comparison of pre-trained models
trained on ImageNet with those trained with RadIma-
geNet is provided.

5) Two approaches for video classification that utilize ma-
jority voting, one based on selected frames (VCBSF)
and the other based on the entire video (VCBWV), are
presented.

The remaining paper is organized as follows: Section II
presents the methodology, Section III provides the results, and
Section IV discusses the conclusions and future works.

II. METHODOLOGY

Our proposed method comprises two parts:
1) Frame selection, and
2) Utilization of pre-trained models with RadImageNet and

ImageNet weights for comparison purposes.
Four pre-trained models, namely ResNet50 , DenseNet121 ,
Inception_ResNet_V2 , and Inception_V3 , which are trained
separately using ImageNet and RadImageNet data, are em-
ployed. Thus two sets of pre-trained models are considered
in this paper. These models are used to classify the COVID-
19 US images into three classes namely, COVID-19 , bacterial
pneumonia, and healthy. Examples for each class from lung
ultrasound (LUS) images are shown in Figure 2 where the first
row represents the COVID-19 class, the second row is bacterial
pneumonia, and the last row is the healthy class. Moreover,
majority voting is used to provide video classification either
based on selected frames (VCBSF) or based on the whole
video (VCBWV).

A. Random frame selection

A random selection method is proposed to extract a frame
from each video and compare it with two state-of-the-art
methods: non-adjacent and constant. The constant method
assumes that all videos have a consistent frame rate. The frame
extraction rate is determined by dividing the video frame rate

by the assumed constant frame rate. For instance, as shown
in Figure 2 (a), if the assumed frame selection is 3 frames
in a video with a frame rate of 30 frames per second, then
there will be 10 consecutive frames skipped with every frame
selected for classification. It is important to note that the frame
extraction rate depends on the video frame rate and that there
should be no overlap in the output frames as shown in Figure
2 (a). The frame extraction process continues until the end of
the video or the maximum of an extracted frame is met. In
this work, the maximum is set to 30.

The non-adjacent method was proposed in [24], where
nonadjacent frames were used for classification. Figure 2
(b) shows the non-adjacent method with a constraint of 5
frames per second. Non-adjacent is similar to constant with
the exception that the number of frames may not be dependent
on the frame rate. From frame to frame, the position of the
chosen frames may be different but non-adjacent. Random
selection, on the other hand, eases all the constraints. The
number of chosen frames and the position of the frames within
a video can be different. From frame to frame within a video,
there would be no pattern. Thus the random selection of
frames does not depend on the video frame rate. Figure 2
(c) presents an example of this method where some extracted
frames are closer to each other while others are farther apart.
This enhances the likelihood of obtaining useful frames, as
demonstrated in the results section.

B. Transfer learning

Transfer learning is a method that involves training a deep
learning model on a large dataset and then using the learned
knowledge to tackle a new task with a smaller dataset, such as
the COVID-19 dataset. This approach effectively addresses the
issue of overfitting and can lead to improved performance on
the task at hand. In this work, ResNet50 [20], DenseNet121
[21], Inception_ResNet_V2 [22], and Inception_V3 [23] are
employed for the purpose of the classification. Two different
datasets are used to train these models and retrieve two distinct
pre-trained weights: ImageNet and RadImageNet. ImageNet is
a generic dataset containing approximately 1.3 million images
[18]. On the other hand, RadImageNet is a medical images
dataset [19] with 1.35 million radiologic images obtained from
computed tomography (CT), magnetic resonance imaging
(MRI), and ultrasound (US) modalities. RadImageNet covers
11 anatomical regions, such as brain, hip, knee, and liver, and
was annotated by radiologists with 165 classes.

The original fully connected layers are removed from all
pre-trained models and replaced with a sequence of layers
including an average pooling layer, a dense layer, a batch
normalization layer, a PRELU activation function, a dropout
layer, and a final dense layer with a softmax activation
function, in that order. The first and second dense layers have
128 and 3 neurons, respectively, and the dropout ratio is 0.5.
All convolution layers are frozen except for the last five. The
models are trained using an Adam optimizer (Adam) with a
weight decay of 0.0001 and a learning rate of 0.001 for 100
epochs and with a categorical cross-entropy loss function. To
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 1: Samples of US images of COVID-19, bacterial pneumonia, and healthy lungs. Images (a) to (d) are COVID-19, and
(e) to (h) are bacterial pneumonia while (i) to (l) are healthy lungs.

(a) (b) (c)

Fig. 2: Illustrations of frames selections from the video clip
using (a) constant, (b) non-adjacent, (c) random.

prevent overfitting, early stopping techniques are implemented
with a patience of 20, whereby the training process is halted
if there is no decrease in the validation loss. A comparison
is provided to evaluate the performance of the pre-training
models, ImageNet or RadImageNet, and to determine which

one is better suited for our classification task.

III. RESULTS

The US dataset provided by [8], [25], was used to evaluate
the pre-trained models and frame selection methods. The
dataset consists of 202 videos and 59 images, which were
recorded using either convex or linear US probes and dis-
tributed across four classes: COVID-19 , bacterial pneumonia,
viral pneumonia, and healthy lungs. The data was gathered
from 41 distinct resources, with around half of the dataset
obtained from Northumbria data and Neuruppin. The presence
of COVID-19 was confirmed using RT-PCR by Northumbria
data and Neuruppin, while bacterial pneumonia was confirmed
using X-ray and CT. Further, the entire dataset annotations
have been reviewed and validated by two medical experts,
one of whom is a pediatric physician with more than 10 years
of clinical US experience, and the other is an academic US
course instructor. For the evaluation, only the data gathered by
the convex probe was used, and the viral pneumonia class was
excluded due to its low sample size (only 3 video clips). To
prevent data leakage, a five-fold cross-validation method was
employed based on the video, which ensured that the frames

Authorized licensed use limited to: Carleton University. Downloaded on May 05,2024 at 14:50:34 UTC from IEEE Xplore.  Restrictions apply. 



extracted from the video appeared only in the train or test sets.
The results are provided as the mean of five repetitions.

Table I shows the result of frame classification, video
classification based on selected frames from the test video
clips (VCBSF), and video classification based on the whole
test video clip (VCBWV). The two video classifications are
achieved using majority voting of the frame classifications. It
shows the results obtained when the four pre-trained models
(ResNet50 , DenseNet121 , Inception_ResNet_V2 , and Incep-
tion_V3 ), utilize ImageNet weights. The classification results
provided by ResNet50 and Inception_ResNet_V2 demonstrate
that the random frame selection outperforms the other frame
selections for all classifications (frame and video classifica-
tions VCBSFand VCBWV). The non-adjacent method yields
the best results when the pre-trained model is DenseNet121 for
all classification types. Again, the non-adjacent method pro-
vides the best frame classification only when Inception_V3 is
employed. However, the best results of video classification are
provided using random (VCBSF) and non-adjacent (VCBWV)
frame selection methods when the model Inception_V3 is used.
The important thing to note is that selecting frames randomly
or in a non-adjacent manner consistently outperforms the most
commonly used constant frame technique used in previous
research. The best overall results are achieved when random
frame selection is utilized for the frame and VCBWVclassi-
fications, while the best overall results for the VCBSFclas-
sification are yielded when non-adjacent frame selection is
utilized, as illustrated by the yellow color in Table I. The
Inception_ResNet_V2 model achieved the best performance
for both frame classification and video classification based on
selected frames. On the other hand, for video classification
based on the whole video (VCBWV), the ResNet50 model
produced the optimal performance.

Table II is similar to Table I, except that it uses RadIma-
geNet weights instead of ImageNet weights. The best results
were achieved when ResNet50 , DenseNet121 , and Incep-
tion_V3 were employed with non-adjacent frame selection.
On the other hand, the Inception_ResNet_V2 model provided
the best results when using random frame selection. The
yellow color in Table II indicates the best overall performance.
Specifically, the overall best results for frame classification
are achieved through non-adjacent frame selection and the
use of the Inception_V3 model. Meanwhile, for video clas-
sification VCBSFand VCBWV, the best outcomes are ob-
tained by utilizing random frame selection and the Incep-
tion_ResNet_V2 model. Once again, random and non-adjacent
frame selections outperform the traditional constant frame
selection.

Figure 3 depicts the comparison between four models using
either ImageNet weights or RadImageNet weights (based on
accuracy) with all three types of frame selections considered
in this paper. When using random frame selection, the model
utilizing ImageNet outperforms the RadImageNet model in
all classification types (frame and both video classifications).
However, the performance varies across different classification
types when using non-adjacent frame selection. ImageNet

outperforms RadImageNet for frame classification in all mod-
els, whereas ResNet50 and DenseNet121 perform better with
ImageNet than with RadImageNet for both video classifica-
tions. On the other hand, Inception_ResNet_V2 and Incep-
tion_V3 perform better with RadImageNet than with ImageNet
for both video classifications. In conclusion, most models
perform better with ImageNet than with RadImageNet, likely
because the ImageNet dataset captures more useful informa-
tion than RadImageNet. Further experiments are necessary to
explore the efficacy of RadImageNet. It may be worthwhile to
download RadImageNet and train additional models, such as
Vision Transformer and VGG16, using the pre-trained models
for our classification task.

IV. CONCLUSIONS AND FUTURE WORKS

The methods used for extracting frames from US video
clips include constant and non-adjacent frame selection. The
constant method assumes that all videos in the dataset have
the same frame rate, while the non-adjacent method requires
that the selected frames are not adjacent. A random frame
selection method that does not rely on any assumptions or
constraints was proposed in this paper and the classification
performance obtained with the three frame selection methods
were compared in this paper. Since the US dataset is limited,
transfer learning was considered for COVID-19 classification.
Traditionally, all transfer learning methods employ only pre-
trained models using ImageNet, despite the availability of a
pre-trained model using the medical images dataset RadIm-
ageNet. Therefore, in this paper, performance comparison
was carried out using pre-trained models obtained using each
of these datasets. In order to carry out the classification
comparison in LUS classification, pre-trained models using
ImageNet and RadImageNet were employed for classifica-
tion. The results show that random and non-adjacent frame
selections outperform constant selections. Random selection is
favored because it does not require any assumptions or con-
ditions. Additionally, pre-trained models using ImageNet pro-
vided the best frame classification results, with ResNet50 and
DenseNet121 for VCBSF and VCBWV. Conversely, Incep-
tion_ResNet_V2 and Inception_V3 with RadImageNet yielded
the best performance for VCBSF and VCBWV classifica-
tion. In the future, ensemble deep learning trained on both
ImageNet and RadImageNet may be considered to exploit
the useful information provided by each of the datasets and
improve classification performance. Furthermore, the RadIm-
ageNet dataset may also be utilized to train alternative models
such as VGG16 and vision transformers, which can be subse-
quently utilized in LUS classification task. An advanced voting
technique such as the differential evolution algorithm can also
be employed to enhance video classification performance.
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TABLE I: The results of 4 ImageNet pre-trained models evaluated based on different frame selection methods, including
random (R), non-adjacent (N), and constant (C). The optimal results are highlighted in bold for each frame selection
approach, while the overall best results are highlighted in yellow. F. S. indicates frame selection.

Frame classification VCBSF VCBWV
Models F. S. Sensitivity Specificity Precision F1-Score Accuracy Sensitivity Specificity Precision F1-Score Accuracy Sensitivity Specificity Precision F1-Score Accuracy

R 0.8577 0.9277 0.8529 0.8504 0.8533 0.8770 0.9361 0.8734 0.8667 0.8690 0.8872 0.9416 0.8839 0.8779 0.8801
N 0.8401 0.9191 0.8386 0.8316 0.8352 0.8496 0.9231 0.8461 0.8383 0.8416 0.8540 0.9257 0.8519 0.8434 0.8469ResNet50
C 0.7610 0.8898 0.7796 0.7462 0.7928 0.7758 0.8936 0.8050 0.7567 0.7939 0.7965 0.8940 0.7896 0.7629 0.7805
R 0.8437 0.9207 0.8456 0.8363 0.8389 0.8473 0.9214 0.8500 0.8370 0.8398 0.8421 0.9190 0.8461 0.8319 0.8341
N 0.8558 0.9271 0.8548 0.8494 0.8525 0.8779 0.9374 0.8781 0.8715 0.8737 0.8674 0.9321 0.8649 0.8605 0.8630DenseNet121
C 0.7686 0.8954 0.7622 0.7540 0.7907 0.8026 0.9076 0.8239 0.7951 0.8167 0.8183 0.9097 0.8149 0.8072 0.8139
R 0.8674 0.9324 0.8659 0.8610 0.8633 0.8777 0.9372 0.8778 0.8716 0.8730 0.8829 0.9401 0.8857 0.8776 0.8791
N 0.8506 0.9224 0.8451 0.8426 0.8436 0.8725 0.9316 0.8669 0.8640 0.8631 0.8725 0.9315 0.8660 0.8640 0.8631Inception_ResNet_V2
C 0.8034 0.9064 0.8181 0.7968 0.8266 0.8324 0.9168 0.8565 0.8273 0.8408 0.8452 0.9186 0.8438 0.8319 0.8348
R 0.8467 0.9220 0.8409 0.8385 0.8413 0.8703 0.9330 0.8651 0.8612 0.8633 0.8636 0.9304 0.8595 0.8544 0.8572
N 0.8544 0.9255 0.8507 0.8454 0.8480 0.8710 0.9326 0.8661 0.8600 0.8615 0.8643 0.9297 0.8615 0.8538 0.8554Inception_V3
C 0.7908 0.8996 0.7940 0.7818 0.8059 0.8125 0.9091 0.8227 0.8061 0.8214 0.8389 0.9162 0.8357 0.8269 0.8290

TABLE II: The results of four RadImageNet pre-trained models were evaluated based on different frame selection methods,
including random (R), non-adjacent (N), and constant (C). The optimal results are highlighted in bold values for each frame
selection approach, while the overall best results are highlighted in yellow. F. S. indicates frame selection.

Frame classification VCBSF VCBWV
Models F. S. Sensitivity Specificity Precision F1-Score Accuracy Sensitivity Specificity Precision F1-Score Accuracy Sensitivity Specificity Precision F1-Score Accuracy

R 0.7934 0.8942 0.7938 0.7844 0.7869 0.8263 0.9103 0.8307 0.8175 0.8196 0.8222 0.9078 0.8269 0.8127 0.8146
N 0.8002 0.8970 0.7980 0.7923 0.7926 0.8364 0.9128 0.8305 0.8280 0.8259 0.8293 0.9103 0.8256 0.8227 0.8206ResNet50
C 0.7182 0.8627 0.7176 0.7081 0.7393 0.8060 0.9045 0.8272 0.8048 0.8153 0.8103 0.9023 0.8166 0.8003 0.8018
R 0.8182 0.9065 0.8231 0.8105 0.8128 0.8460 0.9192 0.8570 0.8383 0.8392 0.8418 0.9163 0.8538 0.8345 0.8342
N 0.8221 0.9081 0.8168 0.8138 0.8143 0.8494 0.9228 0.8486 0.8398 0.8416 0.8494 0.9228 0.8486 0.8398 0.8416DenseNet121
C 0.7592 0.8839 0.7474 0.7421 0.7744 0.7952 0.9006 0.8021 0.7856 0.8034 0.8179 0.9059 0.8151 0.8069 0.8088
R 0.8399 0.9177 0.8365 0.8332 0.8345 0.8872 0.9398 0.8862 0.8804 0.8801 0.8981 0.9456 0.8943 0.8911 0.8908
N 0.8395 0.9182 0.8364 0.8326 0.8346 0.8869 0.9414 0.8850 0.8796 0.8808 0.8869 0.9414 0.8850 0.8796 0.8808Inception_ResNet_V2
C 0.7840 0.8941 0.7804 0.7741 0.7962 0.8313 0.9185 0.8490 0.8309 0.8416 0.8396 0.9171 0.8443 0.8354 0.8353
R 0.8257 0.9111 0.8221 0.8138 0.8177 0.8665 0.9300 0.8628 0.8561 0.8573 0.8566 0.9251 0.8540 0.8437 0.8462
N 0.8426 0.9191 0.8381 0.8350 0.8363 0.8870 0.9408 0.8846 0.8787 0.8792 0.8911 0.9431 0.8901 0.8837 0.8842Inception_V3
C 0.7847 0.8967 0.7731 0.7721 0.7990 0.8329 0.9198 0.8412 0.8283 0.8415 0.8490 0.9221 0.8439 0.8379 0.8409
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Fig. 3: Accuracy of 4 pre-trained models using ImageNet or RadImageNet weights with random, non-adjacent, and constant
frame selections for (a) frame classification, (b) VCBSF, (c) VCBWV. ResNet50, DenseNet121, Inception_ResNet_V2, and
Inception_V3 are indicated by E, D, I, and V, respectively.
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